Ordinary Differential Equations with Fractalnoisef
نویسنده
چکیده
The diierential equation dx(t) = a(x(t); t) dZ (t) + b(x(t); t) dt for fractal-type functions Z (t) is determined via fractional calculus. Under appropriate conditions we prove existence and uniqueness of a local solution by means of its representation x(t) = h(y(t) +Z(t); t) for certain C 1-functions h and y. The method is also applied to It^ o stochastic diierential equations and leads to a general pathwise representation. Finally we discuss fractal sample path properties of the solutions. 1. Introduction In this paper we study the diierential equation on the real line dx(t) = a(x(t); t) dZ(t) + b(x(t); t) dt (1.1) x(0) = x 0 under the following conditions: (C1) Z is HH older continuous of order > 1 2 , Z(0) = 0
منابع مشابه
APPLICATION NEURAL NETWORK TO SOLVE ORDINARY DIFFERENTIAL EQUATIONS
In this paper, we introduce a hybrid approach based on neural network and optimization teqnique to solve ordinary differential equation. In proposed model we use heyperbolic secont transformation function in hiden layer of neural network part and bfgs teqnique in optimization part. In comparison with existing similar neural networks proposed model provides solutions with high accuracy. Numerica...
متن کاملStudy on usage of Elzaki transform for the ordinary differential equations with non-constant coefficients
Although Elzaki transform is stronger than Sumudu and Laplace transforms to solve the ordinary differential equations withnon-constant coefficients, but this method does not lead to finding the answer of some differential equations. In this paper, a method is introduced to find that a differential equation by Elzaki transform can be solved?
متن کاملReduction of Differential Equations by Lie Algebra of Symmetries
The paper is devoted to an application of Lie group theory to differential equations. The basic infinitesimal method for calculating symmetry group is presented, and used to determine general symmetry group of some differential equations. We include a number of important applications including integration of ordinary differential equations and finding some solutions of partial differential equa...
متن کاملNumerical solution and simulation of random differential equations with Wiener and compound Poisson Processes
Ordinary differential equations(ODEs) with stochastic processes in their vector field, have lots of applications in science and engineering. The main purpose of this article is to investigate the numerical methods for ODEs with Wiener and Compound Poisson processes in more than one dimension. Ordinary differential equations with Ito diffusion which is a solution of an Ito stochastic differentia...
متن کاملConvergence of the multistage variational iteration method for solving a general system of ordinary differential equations
In this paper, the multistage variational iteration method is implemented to solve a general form of the system of first-order differential equations. The convergence of the proposed method is given. To illustrate the proposed method, it is applied to a model for HIV infection of CD4+ T cells and the numerical results are compared with those of a recently proposed method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997